LaTiM: Longitudinal representation learning in continuous-time models to predict disease progression
Abstract
Introduction
Methods
Results
Discussion
Conclusions
Acknowledgments
Citation
Zeghlache, R., Conze, P., El Habib Daho, M., Li, Y., Le Boité, H., Tadayoni, R., Massin, P., Cochener, B., Rezaei, A., Brahim, I., and others (2024). LaTiM: Longitudinal representation learning in continuous-time models to predict disease progression. International Conference on Medical Image Computing and Computer-Assisted Intervention.
@inproceedings{zeghlache2024latim, title={LaTiM: Longitudinal representation learning in continuous-time models to predict disease progression}, author={Zeghlache, Rachid and Conze, Pierre-Henri and El Habib Daho, Mostafa and Li, Yihao and Le Boité, Hugo and Tadayoni, Ramin and Massin, Pascale and Cochener, Béatrice and Rezaei, Alireza and Brahim, Ikram and others}, booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention}, pages={404--414}, year={2024}, organization={Springer Nature Switzerland Cham}, }