Rachid (Youven) Zeghlache

Rachid (Youven) Zeghlache

Post-doc at IMT Atlantique

Post-doc at IMT Atlantique, France. Researching in the field of machine learning and its applications.
11 Publications
147 Citations
6 h-Index

Latest News

  • Nov 15, 2024 AI Symposium 2024 Announced
  • Oct 01, 2024 New Research Grant Awarded
  • Sep 20, 2024 Machine Learning Workshop for Graduate Students
  • Sep 20, 2024 Machine Learning Workshop for Graduate Students

Research Highlights

Current and past research initiatives

Deep Learning for Retinal Degeneration Assessment: The MARIO AMD Progression Challenge

A comprehensive analysis of the MARIO challenge held at MICCAI 2024, evaluating AI algorithms for detecting and monitoring age-related macular degeneration progression using OCT imaging.

Read more

Neural ODEs for Disease Progression Modeling

Developing Neural Ordinary Differential Equations to model and predict diabetic retinopathy progression.

Read more

Recent Publications

Published research works and academic papers

Automated classification of tertiary lymphoid structures in colorectal cancer using TLS-PAT artificial intelligence tool

Le Rochais, M., Brahim, I., Zeghlache, R., Redoulez, G., Guillard, M., Le Noac’h, P., Castillon, M., Bourhis, A., & Uguen, A. (2025)

Scientific Reports

Automated Multimodal Severity Assessment of Diabetic Retinopathy Using Ultra-Widefield Color Fundus Photography and Clinical Tabular Data

Rezaei, A., Zeghlache, R., Conze, P., Lepicard, C., Deman, P., Borderie, L., Cosette, D., Bonnin, S., Couturier, A., Cochener, B., & others (2025)

Available at SSRN 5143621

L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction

Zeghlache, R., Conze, P., Daho, M., Li, Y., Rezaei, A., Le Boité, H., Tadayoni, R., Massin, P., Cochener, B., Brahim, I., & others (2025)

Computers in Biology and Medicine

A review of deep learning-based information fusion techniques for multimodal medical image classification

Li, Y., Daho, M., Conze, P., Zeghlache, R., Le Boité, H., Tadayoni, R., Cochener, B., Lamard, M., & Quellec, G. (2024)

Computers in Biology and Medicine

AB0800 DIAGNOSING SJOGREN’S SYNDROME: A MULTI-MODAL DEEP LEARNING APPROACH WITH HISTOPATHOLOGIC IMAGES AND CLINICAL DATA

Brahim, I., Uguen, A., Zeghlache, R., Devauchelle-Pensec, V., & Cornec, D. (2024)

Annals of the Rheumatic Diseases